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The quasi-one-dimensional antiferromagnet 
CsMnCl, 2H,O: I. A randomphase approximation 
model 

G J Bowden and J P D Martin 
School of Physics, University of New South Wales, Kensington. NSW 2033. Australia 

Received 13 April 1988 

Abstract. A self-consistent random-phase approximation model has been used to simulate 
the magnetic properties of quasi-one-dimensional and three-dimensional antiferromagnets 
at low temperatures, and in various applied fields. To avoid problems associated with crystal- 
field terms, we have replaced the quadratic D[S;  - fS(S + l)] term, which is responsible for 
easy-axis alignment, with anisotropic magnetic exchange. The resultant calculations have 
been used to discuss sublattice magnetisation, specific heats and nuclear-magnon coupling, 
in various applied fields, particularly near the antiferromagnetic-paramagnetic phase 
transition. Our principal conclusion is that magnetic moments in quasi-one-dimensional 
antiferromagnetic moments are likely to be characteiised by a large zero-point motion. This 
feature has important implications for nuclear orientation experiments in the milli-kelvin 
regime. 

1. Introduction 

In recent years, the magnon heat switch in insulating antiferromagnetic compounds has 
been used to reach previously unattainable nuclear spin temperatures in the milli-kelvin 
regime (Allsop et al1984). Simply by applying a magnetic field along the easy axis of an 
antiferromagnetic compound, it is possible to cool the nuclei, by bringing them into 
contact with the magnon and phonon heat reservoirs. In general, nuclear spin tem- 
peratures are higher than those of the magnon and phonon heat baths, because of the 
long nuclear spin relaxation times T I  encountered in the milli-kelvin regime. Fortunately 
this thermal bottleneck can be bypassed by applying the so-called spin-flop field BSf along 
the easy magnetic axis of the antiferromagnetic compound. This effectively reduces the 
energy gap in the magnon dispersion curve to zero, thereby allowing the nuclei and 
magnons to exchange energy freely via the off-diagonal elements in the nuclear hyperfine 
interaction AI S .  Concomitantly, it is possible to isolate the nuclei, once they have 
been cooled, by simply removing the magnetic field. These two features allow both 
nuclear orientation (NO) and nuclear magnetic resonance on oriented nuclei (NMRON) 
to be carried out rapidly, and with high sensitivity (e.g. Allsop et a1 1984). Recently, for 
example, the magnon heat switch has been employed in pulsed 54Mn NMRON experiments 
byTurrelletal(1987), andbyBowdenetal(1987) intheir~tudyof~~Mn~~~enhancement 
factors in MnC12 * 4H20 as a function of applied field. 

In all of the previously mentioned investigations, however, only two three- 
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dimensional (3D) antiferromagnetic salts MnC12 * 4H20 and MnBr2 9 4H20 have been 
examined in any detail. In essence, these two antiferromagnetic compounds are charac- 
terised by exchange interactions which are roughly of the same order of magnitude in 
all three principal directions. Turrell(1985) has reported some preliminary data on the 
two-dimensional antiferromagnetic salt Mn(COOCH)2 4H20, where the exchange 
parameter J ,  along the a axis is some one-thousandth of the strength of the exchange 
parameters along the b and c axes. However, to our knowledge, no NO or NMRON results 
have been reported for one-dimensional (ID) antiferromagnetic salts. This class of one- 
dimensionai antiferromagnetic salts is expected to show unusuai behaviour, as noted for 
example in the review article by de Groot and de Jongh (1986). Moreover, it is also of 
interest to enquire whether or not the ‘magnon heat switch’ can also be used in quasi-iD 
antiferromagnetic insulators, alternately both to cool and to isolate the nuclei. 

With these ideas in mind, therefore, we have carried out a special study on the 
one-dimensional antiferromagnet CsMnC1,. 2H20.  This compound orders at 4.88 K 
(Butterworth etal 1973) and possesses aspin-flop field &of 1.68(2) T (this work). To all 
intents and purposes therefore, CsMnCl, . 2H20  is very similar to the 3~ antiferromagnet 
MnC12.4H20,where T, = 1.62 KandBsi = 0.72 T(RivesandBenedict 1975).However 
both the specific heat studies in Kopinga et a1 (1975) and the neutron scattering data 
reported in Skalyo etal (1970a, b) reveal that the strength of the exchange parameterj,, 
along the a axis of the orthorhombic structure, is some 300 times stronger than that along 
the b and c axes. Thus this compound should be representative of one-dimensional 
antiferromagnetic insulators. 

In this, the first of two papers (hereafter referred to as I), we present some theoretical 
calculations for one-dimensional antiferromagnetic insulators. We have chosen to 
present our theoretical calculations first because it is believed that the conclusions 
reached during this stage of our work have an important bearing on the interpretation 
of the experimental data presented in the following paper (Bowden et a1 1989, which we 
shali refer to as 11). in  particuiar, it wiil be argued that one-dimensional anti- 
ferromagnetic insulators are likely to be characterised by a very large zero-point motion 
(-30%). Thus attempts to interpret the NO data from quasi-iD antiferromagnetic insu- 
lators, using spin-wave theory (see for example Gladkov 1986a, b), are unlikely to 
succeed. 

The structure of this paper is as follows. In § 2, the various mathematical approaches 
that can be used to investigate the nuclear-magnon interaction in the strongly coupled 
regime are reviewed. In §§ 3 and 4, full details are given of the random-phase approxi- 
mation (RPA) model, used to compute ensemble averages such as the magnetisation, 
etc., in various appiied fields. In particular, a modification to the usual low-temperature 
spin-wave approximation is presented which can be used to calculate both the entropy 
and specific heat right up to the NCel temperature Tx.  

2. Mathematical preliminaries 

As mentioned earlier, the nuclei and magnons in an easy-axis antiferromagnetic salt 
become strongly coupled when the applied magnetic field is raised to the spin-flop value 
Bsf. Thus the use of spin-wave theory (e.g. Gladkov 1986a, b), and or perturbative 
methods, must fail near Bsf. Further, it will be shown in this paper that one-dimensional 
antiferromagnets, in zero applied field and at zero temperature, are characterised by 
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considerable zero-point motion of the magnetic ions. We therefore seek a model that 
can accommodate, ab initio, large deviations from magnetic saturation in both the 
nuclear and electronic antiferromagnetic sublattices. 

Of the models available, the random-phase approximation (RPA) appears to be 
most suitable. This model can be used, at least in principle, to compute self-consistent 
observables over the whole range from 0 G Bapp G BSf. Further, in the limit T+ 0 K, it 
is well known that the results of the RPA model reduce to those of spin-wave theory, at 
least in 3D antiferromagnets (Keffer 1966). However there are problems. 

in  the first piace, it is not possibie to model accurately even a simple two-eiectronic- 
sublattice antiferromagnet, subject to both antiferromagnetic exchange and crystal-field 
interactions. In general, easy-axis insulating antiferromagnets such as MnC12. 4H20 are 
well described by a simple Hamiltonian 

where J ,  is an isotropic exchange parameter and D is a simple quadratic crystal-field 
parameter which constrains the spins to point along the easy magnetic axis. However, 
in practice crystal-field interactions are not easily incorporated into the RPA. This prob- 
lem has been discussed by Egami and Brooks (1975), Haley (1978) and more recently 
by Bowden et a! (1986). Unfortunate!y, the use of the RPA, to reduce the number of 
coupled Green functions to a manageable level, leads to inconsistencies in the calculation 
of ensemble averages. However, unlike single-ion crystal-field anisotropy, anisotropic 
magnetic exchange, which mimics the easy alignment of the magnetic ions, can be easily 
incorporated into the RPAapproximation with no inconsistencies. In this paper therefore, 
we shall replace equation (1) with 

This approximation means of course that exact agreement with experiment and the 
predictions of the RPA model cannot and should not be expected. Neverthe!ess, we 
believe that the results obtained using equation (2) represent a good first approximation 
to this difficult problem. 

On a more positive note, it is possible, within the RPA, to compute self-consistent 
Fano statistical tensors (ensemble averages) using the recursion relationships given by 
Bowden et a1 (1986). These relationships, originally derived for an ordered nuclear 
ferromagnet, still hold regardless of the number of collinear magnetically coupled 
sublattices. Consequently, it is a relatively easy matter to extend the calculation for 
a simple two-sublattice electronic antiferromagnet to one that includes two nuclear 
sublattices. The latter calculations are of course of great intere’st in the interpretation of 
nuclear orientation (NO) results, where the y-ray anisotropy pattern is dictated priniarily 
by the nuclear Fano Statistical tensor p i .  

Finally, before leaving this section it should be noted that the operators used in the 
remainder of this paper are not the Cartesian operatorsJ,, J y ,  J, ,  etc, used in equations 
(1) and ( 2 ) ,  but rather unit irreducible tensor operators e. In decoupling Green function 
equations, irreducible tensor operators are much more convenient to use in practice 
because of their contraction properties. All the terminology used in this paper therefore 
closely follows that of Bowden et a1 (1986). 
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3. Green function theory applied to a simple two-sublattice antiferromagnet 

In terms of unit tensor operators for both the electronic and nuclear spins, the 
Hamiltonian in question can be written in the form 

'de = -42 ~2(S)J,[f~(i)Tb(j) - f i ( i )T ! . I ( j )  - T L I ( i ) f i ( j ) ]  
kii 

where (i) e (i$) refers to the electronic (nuclear) unit tensor operators. respectively, 
(ii) J, describes the isotropic exchange interaction (negative for antiferromagnets), (iii) 
K ,  is the anisotropic exchange which mimics easy-axis alignment, (iv) A is the hyperfine 
interaction parameter (negative for Mn nuclei) and (v) 

a(S) = 1/[12(2S - 1)!/(2S + 2)!]1'2 (4) 
where S is the spin of the electronic moment. In Mn'- antiferromagnets. the hyperfine 
interaction A I .  S is the dominant term in the nuclear Hamiltonian, and so we shall ignore 
any nuclear quadrupole interactions, nuclear spin-spin coupling, etc. 

As noted earlier, once the eigenvalues and expectation values (9) and (L;)  have 
been calculated within the RPA, it is possible to derive thermodynamic quantities such 
as sublattice magnetisation, etc, even in the strongly coupled regime. For example, for 
NO experiments the required statistical tensors are given by p; = (- l)"(L;), where the 
(-1)" has been inserted to bring about agreement between our work and that of Steffen 
and Alder (1975). 

4. Two-sublattice electronic antiferromagnet: A = 0 

Before embarking on a discussion of the general case, it is instructive first to consider 
the case of a simple antiferromagnet with no hyperfine interactions. Using standard 
Green function theory (Zubarev 1960) (see also equations (17) and (18) from Bowden 
et a1 (1986)), and taking the site 1 to be on sublattice (1). it can be shown that the 
appropriate Green function equation of motion for sublattice (1) is given by 
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where (i) a(S) is given by equation (4) and (ii) 

c1 = -[(n + q)  (n  - q + I)/~]' '~/E(s). (6) 

In practice, only equations with q = 0 are non-zero in our RPA model. However, for 
generality, we shall continue to write down the Green function equations for general q. 

If only nearest-neighbour (NN) interactions between alternate sublattices (1) and (2) 
are allowed, the equation of motion in the RPA approximation reduces to 

E(( ( I ) ;  e - 1 (m))) = c1 (q(m))8/ , , / (2n)  + g,uBBapp(( Pi ( I ) ;  e- 1 (m))) 

+ W )  X (1, + Kl,)@ti(j))(@i(1); Q-l(m>)) 
1'1 

Note that in this equation ( ? ; ( I ) )  and (Pa( j ) )  are distinct, as 1 and j belong to the two 
different sublattices. Consequently, a second equation of motion must be obtained for 
((fi(p); f&,(m))) wherep is located on sublattice (2). We find 

E((f;(p); Q-l(m>)) = cl(Q(m))dp,m/(2n) + g,uBBapp((p!(P); q - l (m) ) )  

+ 4 s )  X (Jpi + K p i ) ( f A ( w ( ~ ; ( p ) ;  Q-1))) 
i # p  

- 4 s )  i # p  c Jpi(Pi(P))((P;(i); q - d m ) ) ) .  (8) 

Thus the problem has been reduced to solving two coupled Green function equations. 
Note that the two delta functions al., and 8p,m cannot simultaneously be equal to unity 
because 1 andp are on separate sublattices. 

Spatial Fourier-transform methods can be used to solve equations (7) and (8) for (e)1,2 (e.g. Zubarev 1960). Following Bowden et a1 (1986), we write 

(9) E G = M G + T  

where (i> 6 is the Green function matrix 

(ii) the matrix M is given by 

The four Green functions GPP(E, k ) ,  G;;(E, k ) ,  G;i(E, k )  and G;S(E, k )  and the 
Fourier transforms J12(k) and J21( -k )  are defined in table 1. The (fb),,, are the self- 
consistent ensemble averages of Ti for the two sublattices (1) and (2), as noted earlier. 
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Table 1. Definition of electronic. nuclear and mixed electronic and nuclear 
Green fu3ctionsa. 

a 2 and m refer to sublattice (1); p and n refer to sublattice (2). 

On solving equation (9) we find 
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Note that if we make the assumption that a(S) (p;), = - a(S) ( fi))2 = S at absolute zero, 
then equation (15) reduces to 

E l k , 2 k  = g p B B a p p  S{[J(o)  + K(0)I2 - J(k)2}1'2 (16) 
which is the well known spin-wave result for antiferromagnetic magnons in cubic 
symmetry. In practice, of course, both the ensemble averages and (f;), in an 
antiferromagnet are less than the saturatedvalue S / a ( S ) ,  as aresult of zero-point motion 
(Keffer 1966). 

Given equations (13)-(15), self-consistent values of (q),,, can be obtained in an 
iterative manner. In practice, this is achieved by performing the inverse Fourier trans- 
forms 

((fi(~); q..,-,(m>)) = 2 ~ - 1  C, G ~ , ( E ,  k )  exp[+ik* (R ,  - R,)j 

((fi(p); ~ - , ( n ) ) )  = 2N-' 2 G22(E,  k )  exp[+ik. ( R p  - R , ) ]  

(17) 

(18) 

k 

k 

and subsequently employing the spectral theorem, as detailed by Zubarev (1960). 
The equilibrium correlation functions of the two sublattices are then obtained via the 
equations 

( Q - l f i ) l  = C l ( Q l 9 1  (19) 

( Q - l f 9 2  = c&)292 (20) 
where (i) 

and (ii) 

respectively. The E l k , 2 k  of course are given by the self-consistent solution of equation 

In practice, it can be shown that the functional form of equations (19) and (20) is 
exactly the same as that found for simple ferromagnets (see eqilation (24) of Bowden et 
al(l986)). Thus the recursion relationships and expressions for the (e) given by these 
authors also apply here, the only quantitative difference being that of the new weighting 
factors 9 and q2,  which reflect the presence of two coupled magnon branches. 

Using equations (5)-(22), calculations of the sublattice magnetisations, entropy and 
specific heat for the model antiferromagneticsystem have been carried out. Of particular 
interest is the behaviour of these parameters near the field-induced phase transition. 
The calculations presented below are for the specific case of S = 2 ,  which corresponds 
to the spin of the Mn2+ ion. 

(15). 
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4.1. Sublattice magnetisation: A = 0 

From table 2 of Bowden et a1 (1986), the sublattice magnetisations are given by 

and 

for S = 4. Both these values of (pi)l and (?A), exhibit zero-point motion of the ground 
state at T = 0 K, a characteristic property of antiferromagnets. 

Before calculating the self-consistent values of ( ?i)l,2, it is necessary to specify the 
spin structure of the antiferromagnetic compound, since the magnon dispersion term 
JI2(k) depends explicitly on the spatial arrangement of nearest neighbours. For the 
purposes of this paper it will be assumed that the model antiferromagnet consists of two 
interpenetrating face-centred-cubic lattices. This results in a simple cubic arrangement 
of the nearest neighbours, of distance a (A), about any particular ion. Consequently, 
following Kubo (1952), we find 

= J ~ D (  - k )  = J,,(O) [cos(k,a) + COS(~,U)  + C O S ( ~ , U ) ] / ~  (25)  
for isotropic 3D exchange, while 

JQlD(k) = JQID(-k) = JQlD(O){V[cos(kxa) + cos(kya) l  + cos(kza)}/(l + 217) (26)  
for quasi-iD exchange, where 1. 

Fortunately, the required computation can be reduced by exploiting the symmetry 
of the Brillouin zone. For the isotropic 3~ exchange an irreducible one-forty-eighth of 
the zone is required. For the quasi-iD exchange, however. one-sixteenth of the zone is 
required, as a result of the lower symmetry. In addition, it should be noted that in 
practice the real mesh of N k-space values is replaced by a coarser grid of n points 

where the El are the points in the new grid system. Thus the RPA calculations for q and 
q2 were not carried out using equation (21), but rather 

where (i) n was usually set at 7110 for both the 3D and quasi-iD antiferromagnets and (ii) 
the weighting factors W(q)  account for any degeneracies at each point q in the respective 
irreducible zones. Thus the total number of points sampled in k-space was 8 x 7110. 
Note that since the first Brillouin zone is a truncated octahedron, the summations along 
any direction must cease when the boundaries 

k,a, k,a, k,a = x and lk,al + lk,al + lk,al = 1 . k  (29)  
are exceeded. 

Self-consistent calculations of the sublattice magnetisations, in zero applied field, as 
a function of temperature may be seen in figure 1 for a 3D and quasi-iD antiferromagnet. 
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I 

T 

Figure 1. The calculated magnetisation, entropy and specific heat results for a 3D anti- 
ferromagnet (a ) ,  with S = 5/2 and (J(0) + K(O))/J(O) = 1.233, and a quasi-iD anti- 
ferromagnet ( b ) ,  with S = 5/2 and ( J ( 0 )  + K(O))/J(O) = 1.00215, in the absence of nuclei. 

The choice of the [J(O) + K(O)]/J(O) ratios used in these calculations was dictated 
primarily by the measured values of the exchange field B F  and the anisotropy field B A  
in MnCI2.4H20 and CsMnC13.2H20 respectively (Bowden et a1 1987, 11). Since (i) 
these parameters were obtained using a mean-field Hamiltonian and (ii) the simple cubic 
lattice does not truly represent the two compounds in question, only semi-quantitative 
agreement with experiment should be expected, as noted earlier. 

From an examination of figure 1, it will be observed that the temperature scale has 
been expressed in dimensionless units t , where 

t = k,T/g,uBBZf 

and gpBBgf = SJ(0) .  Thus if either T o r  is known then the other quantity can be 
calculated. For example using Bgf = 1.099 T for MnC12. 4H20 (see Bowden et a1 1987), 
and tN = 1.216 from figure l(a),  equation (30) reveals that T = 1.795 K. The difference 
between this estimate and the observed Ts of 1.62 K presumably results from a com- 
bination of the use of molecular-field parameters, an incorrect lattice structure, magnetic 
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K 10 IN 10 1 

Figure 2. The calculated zero-point motion, [ 1 - (S,)/S], of an antiferromagnet as a function 
of the magnetic exchange ratio q = (J,/J,) (the numbers against the curves are values of 
1/11), and the anisotropic magnetic exchange parameter K(O)/J(O). 

anisotropy in place of crystai-field alignment and the RPA approximation used in the 
many-body model. Another approach to the problem would be to fit both zN and the 
spin-flop field transition to the experimental data. In this way J(0) and K(0)  could 
be obtained directly. However, since our model only exhibits an antiferromagnetic- 
paramagnetic (AF-P) transition, no progress can be made in this direction. 

From an examination of the two-sublattice magnetisations shown in figure 1, the 
most obvious difference to emerge between quasi-1D and 3~ antiferromagnets is the 
appearance of large zero-point motion in the quasi-1D antiferromagnet. In the 3D anti- 
ferromagnet, with K(0)  set equal to 0.233J(O), there is a 1.54% deviation from full 
saturation of the expectation value (S,) = %. However in the quasi-1D antiferromagnet, 
with K(0)  = O.OOU(O), there is a massive 32% reduction. This huge zero-point motion 
at T = 0 K is very dependent on the magnetic anisotropic exchange parameter K(0). 
I nis point is further ik-istiateb in figure 2,  which s h o ~ s  the zero-point motion of an S = 
3 ion, at T = 0 K, for various ratios of the exchange parameter q (J,/J,) and the magnetic 
anisotropyparameterK(0). For example, if the3~value of K(0) = 0.233J(O) appropriate 
to MnC12. 4H20 is used, the zero-point motion drops to 5%. These results are compared 
in table 2 with results obtained using the spin-wave theory of Keffer (1966) and the 
results of Davis (1960) obtained using a cluster expansion model. In order to make direct 
comparison with Keffer (1966), the Green function calculations were obtained by (i) 
summing over a cubic Brillouin zone and (ii) using the full Brillouin zone boundary 
restrictions of equation (29). 

From an examination of the results shown in table 2 it will be seen that the Green 
function calculations agree closely with the spin-wave theory of Keffer (1966) and 
qualitatively with the cluster expansion result of Davis (1960). With regard to the spin- 
wave result it can be shown that equation (28) for q2 at T = 0 K is exactly equal to the 
expression AMso for the magnetic deviation from saturation given by Keffer (1966). 
Thus in the low-temperature limit, the 3D Green function calculations must approach 

m, 
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Table 2. Predictions of the zero-point motion of an S = 3 spin in ID and 3D antiferromagnetsa. 

Green function theory 
Spin wave 
Keffer (1966, Cubic BZ Full BZ Cluster theory 
eqn (43.14)) summation restricticns Davis (1960) 

Cubic 
K(0)  = 0 3.12% 3.12% 3.36% 2.49% 

Quasi-ii, 22.0% 2 i S %  32.4% 10.~770 

K(O)/J(O) = 0.00215 
T 

K(0)  = 0 
Jb/Ja = 0.01 Jb/J, = 0 

a Note that the spin-wave calculation (using equation (43.14) of Keffer (1966)) and the cubic 
Green function summation, used a k-space summation over a cubic Brillouin zone. The full 
BZ boundary restriction calculation, however, used a k-space summation cver a truncated 
octahedron for Brillouin zone. 

the spin-wave results. In the case of the cluster expansion method however, Davis (1960) 
truncated the series expansion after the seventh order, but was unable to prove that this 
was sufficient. Indeed Keffer (1966) has noted that, for the linear chain, the seventh- 
order term is quite large. Thus the accuracy of the Davis estimates must be questioned. 
By way of contrast however, Green function theory includes all orders of interaction, at 
least within the RPA approximation. Thus the RPA model should provide the most 
accurate calculation, to date, of zero-point motionin a quasi-iD antiferromagnet. Finally, 
it should be noted that the spin-wave calculations of Keffer (1966) ignore the second 
boundary condition of equation (29). Wfiiie this is probably a reasonable approximation 
for 3D antiferromagnets at very IOW temperatures, its validity for quasi-iD anti- 
ferromagnets is questionable. 

In summary, therefore, we believe that quasi-m antiferromagnets with low an- 
isotropy will exhibit considerable zero-point motion. This phenomenon has immediate 
implications for the NO results in the quasi-iD antiferromagnet CsMnCl3* 2H20, dis- 
cussed in 11. For example, the large transverse fluctuations in the electronic spins of the 
Mn2+ ions in CsMnC13. 2H20 associated with zero-point motion may be able to induce 
transitions in the nuclear levels, via the off-diagonal elements in the hyperfine inter- 
action. This point will be raised again in 11, in our discussion of the observed cooling 
rates in CsMnC13 * 2H20.  

The situation in external magnetic fields, directed along the easy magnetic axis, is 
summarised in figure 3. Note that the field-dependent AFP phase transition is reached 
when one of the sublattice magnetisations (S,) + 0. This information has been used to 
determine the phase diagrams shown in figure 4. It wiil be observed that the maximum 
in the AF-P transition occurs around z = zN/2 where the largest changes in the specific 
heat induced by applied magnetic fields also occur. From the adiabatic magnetisation 
point of view therefore, maximum adiabatic cooling could be achieved in this region. 

The calculated behaviour of the (?A),,, shown in figure 3 also reveals that both 
sublattice magnetisations change significantly with applied field, particularly near 
the phase transition. In this region, therefore, the spin-wave approach of Gladkov 
(1986a, b) would be clearly inappropriate. 
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r 

Figure 3. Calculated temperature dependence of the sublattice magnetisation in a 3~ anti- 
ferromagnet (a ) ,  with S = 5 / 2  and ( J (0 )  + K(O))/J(O) = 1.233, and a quasi-lr, anti- 
ferromagnet ( b ) ,  with S = 5/2 and ( J ( 0 )  + K(O))/J(O) = 1.00215. in various applied fields. 
withB,,,/Beff = 0.0.12,0.24,0 36.0.48.0.60.0.68for (a) .  and0,0.016,0.024.0.032.0.044 
for ( b ) .  

4.2. Entropy and specific heat 

In the interpretation of NO experiments, the behaviour of the entropy and specific heat 
near field-induced phase transitions and their influence on the cooling rates of nuclear 
spins are of great importance. However, before we can use the RPA results presented 
earlier, there is a mathematical difficulty to be overcome. 

The usual method of estimating the total energy of the magnons is based on the 
harmonic oscilkitor ZippiGXh?:iGil. Jl'hile this apprmimation is w!id 3s T+ 0 I(, it will 
overestimate thermodynamic quantities as the energy gap in the magnon excitations 
goes to zero. This of course is exactly what happens when BapF-+ BSf. One solution to 
this problem would be to use the harmonic oscillator description in low magnetic fields 
at low temperatilres, while reverting to a simple renormalised effective-field model at 
higher temperatures. However, inevitably, there will be difficulties in interpolating 
between the two distinct models. 

A simpler, more elegant, solution has been devised, which involves modifying the 
usual boson occupation number. Instead of writing 

n , ( k )  = bP(BE,k) - 11-l (31) 
we define a quasi-boson occupation number 
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Figure 4. The magnetic phase diagram of a :D antiferromagnet (a ) .  with S = 5/2 and 
( J ( 0 )  + K(O))/J(O) = 1.233. and a quasi-11, antiferromagnet ( b ) ,  with S = 5/2 and 
( J ( 0 )  + K(O))/J(O) = 1.00215, in the random-phase approximation. 

With this simple change to the accepted harmonic oscillator description, it can be shown 
that the correct entropy and specific heat limits are obtained at both high and low 
temperatures (Martin 1987). 

In this approximation, the entropy for the model antiferromagnet, for any Bapp and 
1 , 1s glvcll uy T : Ay. - -  1- . 

1 PEjk (2s + 1) exp[ -(2S + 1)/3Ejk] 
1 - exp[-(%S + 1)PEjk] 

- 

and the specific heat by 

(33) 

Once again, for eese of computation, both the entropy and its temperature derivative 
were calculated using a coarse grid in the Brillouin zone. Consequently equation (33) 
was modified in similar fashion to equation (28), to preserve normalisation. 
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Tne calculated zero-applied entropy and specific heat behaviour are shown alongside 
the sublattice magnetisation curves in figure 1. Some calculations of possible temperature 
changes, following adiabatic magnetisation, are also shown in the phase diagrams of 
figure 4. As mentioned previously, this is the well known cooling effect predicted and 
observed experimentally by Joenk (1962). 

In comparing the specific heat and entropy behaviour of a 3~ antiferromagnet and 
quasi-1D antiferromagnet, in zero applied field (figure l), it is apparent that the quasi- 
ID antiferromagnet has a lower magnon specific heat and entropy as T+ 0. This is 
in agreement with the experimental results for CsMnCi3 2H20 and MnCi2. 4H20, 
determined by Kopinga et al(1975) and Miedema et a1 (1969, respectively. Further, the 
specific heat and entropy for the quasi-iD antiferromagnet in zero applied field are really 
only significant at zN. By way of contrast, the 3~ antiferromagnet has a significant specific 
heat value down to tN/3. Note that the maxima in the specific heat coincide with zN, as 
expected. 

t t 
r 
T 

i 

t 

T 

8.0.044 I 8.0 I I b i  

T 
Figure 5. The calculated applied field dependence, B = B,,,/B,,,, of the specific heat for 
a 3D antiferromagnet (a) ,  with s = 5 / 2  and (J (0)  + K(O))/J(O) = 1.233, and a qUaSi-lD 
antiferromagnet (b ) ,  with S = 5/2 and (J(0) + K(O))/J(O) = 1.00215. 
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The dependence of the specific heat on temperature for various applied fields is 
shown in figure 5. In both cases the specific heat near the field-induced phase transition 
is not orders of magnitude greater than that in zero applied field. Thus the specific-heat 
problem posed by Allsop et a1 (1984) remains. As a check on the reliability of these 
calculations, some experimental results on the specific heats of MnC1,. 4H20 and 
CsMnCl3*2H20, in applied fields, have been compared with the Green function 
calculations. Giauque and Reichert (1969) and Giauque et a1 (1970) have provided some 
information for MnC12 * 4H20  above 0.4 K, aregion where the magnon-nuclear coupling 
can be expected to have negligible effect. These data, shown in figure 6, reveal only a 
25% increase of the specific heat at Bsf, in reasonable agreement with the Green function 
calculation presented in figure 5(a). No experimental information is available for 
CsMnC13. 2H20, but data on other quasi-ID antiferromagnets, (CH3)3NHMnX3. 2H20 
where X = C1, Br (Takeda eta1 1982), reveal a considerable increase in the specific heat 
with increasing field just below T,. 

I I 1 , I I 1 I I 1 I , 
0 0.5 I .0 

Temperature, T I K i  

Figure 6 .  Experimental specific heat measurements for MnC12.4H20, in various applied 
fields: Miedema et a1 (1965), Bap, = OT (x) ;  Giauque et al (1969), Bap, = OT (U), 0.72T 
(+) and 0.73 T (0). 

5. Two-sublaitice antiferromagnet with hyperfine interactions 
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G"' = 

and two nuclear 

G;!(E,  k )  G?;(E. k )  G;T(E, k )  GqZ(E, k )  

where the and L i  refer to the electronic and nuclear operators, respectively. Note 
that @(I)  is given by equation (4) with S replaced by the nuclear spin 1. As before 1 and 
p belong separately to sublattices (1) and (2), while a(S) and c1 are given by equations 
(4) and (6) respectively. Note that it has been explicitly assumed that m and 1 lie on 
sublattice (l), and so the kernel term c1(q(m))/(27c) appears only in equation (35). 

To solve equations (35)-(38), it is necessary to find an expression for 
( ( ? ; ( I ) ;  Q - l ( m ) ) )  and hence (q),.  To obtain and (L;)l,2 three more sets of four 
coupled equations are required, where the Q - , ( m )  operator has been replaced by 

(n) ,  L;-l (m) and Li- (n )  respectively, where n a n d p  lie on sublattice (2). These 
equations are very similar to equations (35)-(38) except that the appropriate kernel term 
appears in the new parent equation of motion. For example, the equation of motion for 
( ( t ; ( p ) ;  L;-l(n))) is the parent for (L;j2. 

Once again the RPA is employed, and on taking the spatial Fourier transforms a 4 x 4 
matrix equation is obtained 

EGne = MG"' + V (39) 
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(iii) theM(i,j) terms appearinginequation (41) are purelyelectronic terms (seeequation 
(I 1)) and (iv) 

O 
0 . (42) 

(43) 

(44) 

1 C d Q  1 / W )  0 0 0 

c1 (C)2/(234 0 0 

0 C2(-i)-nPnq[2]/(24 0 

0 0 0 c2 (- 1) -n P i [ * ]  / ( 2 4  
Note that 

and 

in accordance with equation (6). 

ively, we find 

Pb[1] = (-WJ%1 

c2 = -[(n + q)(n - q + 1)/2] l '~/a(~)  

Onsolvingequation(39)for G;t(E, k ) ,  G",(E, k ) ,  G?f(E, k )  and G$(E ,  k )  respect- 

where 
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As before, the energies of the four coupled modes are given by the roots of the matrix 
N. 

Given equations (45)-(49) the self-consistent calculation of the (e),,, and pi[l.21 
may be obtained in a similar manner to those of equations (17)-(22), using the inverse 
Fourier transform equations (17) and (18), together with their nuclear equivalents 

((.L:(L); i;-l(m)>> = 2 ~ - '  G T ~ ( E ,  IC) exp[+ik (R! - R , ) ]  (50)  
k 

( (L i (p) ;  t ; _ , ( n ) ) )  = 2N-' 2 Gq:(E, k )  exp[+ik- (Rp - R J ] .  (51) 

Once again use is made of the spectral theorem of Zubarev (1960), and the equilibrium 
correlation functions 

k 

(56)  

d,i(k) d,i(k) + 

+ 

exp(@E2k) - exp(/-?E3k) - 1 exp(/-?E4k) - 1 

and (ii) the dji(k) are found by converting the energy-dependent terms in the RHS of 
equation (45) into partial fractions. Explicity 

where the Ejk are the coupled excitation energies of the Hamiltonian. The other constants 
dj,(k), dj,(k) and dj,(k) are obtained in a similar fashion, using the RHS of equations (46), 
(47) and (48), respectively. 

As noted earlier the functional forms of equations (52)-(55) are equivalent to the 
solution for the ferromagnet discussed by Bowden et a1 (1986). Only the weighting 
factors q i  have changed to reflect the presence of four coupled modes. However, 
although general analytic expressions for the eigenvalues and the dji(k) can be obtained, 
their complexity precludes any useful discussion. Instead, the required quantities have 
been obtained numerically, using self-consistent calculations of the ( ft))l,2 and ~ t ) [ ~ , , ] .  

5.1. Electronic and nuclear sublattice magnetisations in the coupled regime 

In a similar fashion to equation (231, the electronic sublattice magnetisation for S = 4 is 
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given by 

for the two sublattices, where q3 and Q, are defined in equation (56). The j5Mn nuclei 
also have I = 9 and so possess analogous expressions to those of equation (59). However 
the radioactive 54Mn nuclei, with spin I = 3, have the axial component of their rank-one 
statistical tensor  CY(^^)^,^) in the form 

where q, and 4)6 are also defined in equation (56). In our calculations, we have assumed 
that the 54Mn is 100% abundant. In practice, of course, the radioactive nuclei are quite 
dilute. However, the general properties of the nuclear-magnon coupling will still be 
exhibited. 

The sublattice parameters used to compute the results shown in figure 7 are the same 
for themodel3~ andquasi-iD antiferromagnetsdiscussedearlier. UsingtheMnCl2.4H2O 
data given by Allsop et aZ(1984), the relative hyperfine interaction strength for the model 
3~ antiferromagnet was set at A/g,uB Bkff = -0.00662. For the quasi-m antiferromagnet 
however, A/g,uBBkff  was set equal to -0.000284, since the absolute strength of the 
hyperfine interaction for Mn ions changes little with chemical environment. 

Both the electronic and nuclear sublattice magnetisations in zero applied field can 
be seen in figure 7. Also included in these diagrams are estimates of the total entropy 
and specific heat, based on a model where the nuclei and magnon excitations are assumed 
to be decoupled. It will be observed that the sublattice magnetisations for both the 3~ 
and quasi-1D antiferromagnets are generally unaffected. The only noticeable feature is 
the amplitude of the zero-point motion, which is slightly reduced by the presence of the 
nuclei. The nuclear magnetisations closely approximate those of a paramagnetic ion in 
a fixed magnetic field. This of course supports our previous comments on the localised 
nature of the nuclear energy excitations, particularly in low applied fields and at low 
temperatures. However, this is not the case near the AF-P phase transition. 

5.2. Frequency pulling 

As stated eariier, the RPA was chosen because it can be used KO caicuiare coupied mode 
energies, in a consistent fashion. The k = 0 eigenvalues of the modes can be seen in 
figure 8, which shows the temperature dependence of the nuclear-magnon coupling, in 
zero applied field. From an examination of this diagram it is evident that the coupling 
increases, with the nuclear magnetisation, for both 3~ and quasi-iD antiferromagnets. 
In essence, the off-diagonal terms in the hyperfine interaction A I  - S push apart the 
nuclear and magnon excitation branches, leading to reduction in the Mn hyperfine field. 
However, in the case of the quasi-rD antiferromagnet, the reduction is much more 
pronounced, with changes as large as 15%. In practice, this implies that nuclear cooling 
in a quasi-iD antiferromagnet will become progressively more difficult in the mulli-kelvin 
regime, because the magnitude of the hyperfine field is decreasing with decreasing 
temperature. Using the results presented in figure 9(b) we estimate that the j4Mn 
hyperfine field will decrease by about 6% in going from 70mK to 30mK in 
CsMnCl3.2H,O. 
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Figure 7. The calculated RPA results for a 3~ antiferromagnet containing nuclei (a ) ,  with S = 
512 and (J(0)  + K(@))/J(O) = 1.233. and a quasi-iD antiferromagnet containing nuclei ( b ) .  
with S = 512 and ( J ( 0 )  + K(O))/J(O) = 1.00215. with I = 3 in both instances and the values 
of A/g,u,B':' - 0.00662 and -0.000284 respectively. 

The effect of nuclear-magnon repulsion becomes much more pronounced near the 
AF-P phase transition, as a result of the reduced energy gap in the magnon dispersion 
curve. The calculations shown in figure 9 reveal that the nuclear hyperfine splitting, at 
both sublattices, drops dramatically near the phase transition. This phenomenon, usually 
referred to as 'frequency pulling', has been witnessed experimentally for j'V in V 3 0 7  
(Fujii eta1 1983). Note, from a comparison of figures 9(a) and ( b ) ,  that the reduction in 
the sublattice magnetisation, as a function of applied field, is much more pronounced in 
the quasi-1D antiferromagnet. 

In general, the curvature of the magnetic hyperfine field, as a function of applied 
field, is similar to that found experimentally in MnC12.4H20 (see Allsop et al 1984). 
However, while the change in the hyperfine splitting, predicted by the RPA model, is 
qualitatively similar to that observed in MnCl2.4Hz0, the Green function calculations 
do not fit the observed behaviour as well as the simple effective-field model used by 
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Allsop et a1 (1984) and Martin (1987). In the RPA model the magnetic hyperfine field 
drops more quickly with increasing magnetic field than that found experimentally in 
MnC12.4W20. This may be due to our choice of the K(0)  and J ( 0 )  parameters. For 
example: a larger value of K(0)  would lead to a slower decrease in the hyperfine splitting, 
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Figure 9. The calculated applied field dependence of the k = 0 nuclear excitations for a 3~ 

antiferromagnet (a) and a quasi-iD antiferromagnet ( b ) ,  conditions as for figure 7 .  
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Figure 10. The calculated applied field dependence of the k = 0 magnon excitations for a 3D 
antiferromagnet (a) and a quasi-iD antiferromagnet ( b ) ,  conditions as for figure 7. 
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with increasing applied field. The other main omission of the Green function calculations, 
of course, is the absence of a quadrupole interaction. Unfortunately, the RPA model 
cannot be modified to include quadrupole interactions, for the reasons given by Bowden 
etaZ(1986). 

For completeness, we have also calculated the changes in the magnon mode energies 
of the two model antiferromagnets, shown in figure 10. While the zero-field frequency 
pulling causes a systematic shift in the magnon frequencies the general linear applied 
field dependence is still present, until close to the phase transition. The lifting of the 
magnon frequencies, above their unperturbed values, is, of course, due to the anti- 
crossing behaviour exhibited by coupled modes. 

Finally, it should be admitted that we have been unable to compute the entropy of 
the coupled magnon-nuclei system near the AF-P transition. In zero applied field, the 
nuclei and the magnons are essentially decoupled, so it is permissible to write 

However, equation (60) must fail in the strong-coupling limit. Unfortunately, it is 
difficult to devise a suitable model, perhaps based on the assumption discussed in 0 4.2, 
to compute the entropy of nuclear-magnon mixing. 

6. Conclusions 

Through the use of Green function theory it has proved possible to investigate the effect 
of magnon-nuclei coupling, right up to the AF-P transition. The results have shown that 
significant differences between 3D and quasi-iD antiferromagnets can be anticipated. In 
particular, it would appear that quasi-iD antiferromagnets with low anisotropy will be 
characterised by a larger zero-point motion, resulting in Mn moments some 30% below 
their saturation value at T = 0 K. This observation has immediate implications for NO 
and NMRON experiments on quasi-1D antiferromagnets. In the first place it is likely 
that the measured y-ray anisotropies from quasi-iD antiferromagnets are likely to be 
considerably less than their 3D counterparts, because of their reduced hyperfine fields. 
Secondly, it is possible that the large transverse motion, associated with the large zero- 
point motion, will induce nuclear spin transitions and so give rise to a finite cooling rate, 
even in zero applied field. Both these possibilities, and others, are raised again in the 
following paper which gives details of a 54Mn NO study of the quasi-iD antiferromagnet 
CsMnC13.2H20. 
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